Kinesin and tau bind to distinct sites on microtubules.

نویسندگان

  • P K Marya
  • Z Syed
  • P E Fraylich
  • P A Eagles
چکیده

We have used a fluorescent derivative of kinesin, AF-kinesin (kinesin conjugated with 5-(iodoacetamido)fluorescein), to investigate the binding site of kinesin on microtubules and to compare this site with that to which tau binds. Microtubules saturated with tau will bind AF-kinesin in the presence of the ATP analogue, 5'-[beta,gamma-imino]triphosphate (AdoPP[NH]P). This shows that there are distinct binding sites for the two proteins. Further evidence comes from digestion studies where taxol-stabilised microtubules were treated with subtilisin, resulting in the cleavage of C-terminal residues from both the alpha- and beta-tubulin subunits. These treated microtubules can no longer bind tau, but are able to bind AF-kinesin in the presence of AdoPP[NH]P. Finally, AF-kinesin will support the gliding of subtilisin-digested microtubules in the presence of ATP at rates comparable to those obtained with non-digested microtubules. These results show directly that the binding site for kinesin is outside the C-terminal region of tubulin that is removed by subtilisin and is distinct from the binding site of tau.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion

Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the sur...

متن کامل

Tuning microtubule-based transport through filamentous MAPs: the problem of dynein.

We recently proposed that regulating the single-to-multiple motor transition was a likely strategy for regulating kinesin-based transport in vivo. In this study, we use an in vitro bead assay coupled with an optical trap to investigate how this proposed regulatory mechanism affects dynein-based transport. We show that tau's regulation of kinesin function can proceed without interfering with dyn...

متن کامل

Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.

Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neur...

متن کامل

Differential regulation of dynein and kinesin motor proteins by tau.

Dynein and kinesin motor proteins transport cellular cargoes toward opposite ends of microtubule tracks. In neurons, microtubules are abundantly decorated with microtubule-associated proteins (MAPs) such as tau. Motor proteins thus encounter MAPs frequently along their path. To determine the effects of tau on dynein and kinesin motility, we conducted single-molecule studies of motor proteins mo...

متن کامل

Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules.

We have utilized tau-assembled and tau-stabilized microtubules (MTs), in the absence of taxol, to investigate the effects of tau isoforms with three and four MT binding repeats upon kinesin-driven MT gliding. MTs were assembled in the presence of either 3-repeat tau (3R tau) or 4-repeat tau (4R tau) at tau:tubulin dimer molar ratios that approximate those found in neurons. MTs assembled with 3R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 107 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1994